Model:

GFS (Global Forecast System) Global Model from the "National Centers for Environmental Prediction" (NCEP)

Updated:
4 times per day, from 3:30, 09:30, 15:30 and 21:30 UTC
Greenwich Mean Time:
12:00 UTC = 07:00 EST
Resolution:
0.5° x 0.5° for forecast time <= 384 hrs
Parameter:
Geopotential height Temperature at 500 hPa
Description:
Geopotential height at 500 hPa (solid line)
Temperature at 500 hPa (colored, dashed)

The maps show the predominant tropospheric waves (trough or ridge). They virtually control the ''weather'' (dry, warm / wet, cold) and the long waves drive the smaller synoptic waves. Thus, this upper-level chart illustrates the dynamics of our atmosphere.
Spaghetti plots:
are a method of viewing data from an ensemble forecast.
A meteorological variable e.g. pressure, temperature is drawn on a chart for a number of slightly different model runs from an ensemble. The model can then be stepped forward in time and the results compared and be used to gauge the amount of uncertainty in the forecast.
If there is good agreement and the contours follow a recognisable pattern through the sequence then the confidence in the forecast can be high, conversely if the pattern is chaotic i.e resembling a plate of spaghetti then confidence will be low. Ensemble members will generally diverge over time and spaghetti plots are quick way to see when this happens.

Spaghetti plot. (2009, July 7). In Wikipedia, The Free Encyclopedia. Retrieved 20:22, February 9, 2010, from http://en.wikipedia.org/w/index.php?title=Spaghetti_plot&oldid=300824682
GFS:
The Global Forecast System (GFS) is a global numerical weather prediction computer model run by NOAA. This mathematical model is run four times a day and produces forecasts up to 16 days in advance, but with decreasing spatial and temporal resolution over time it is widely accepted that beyond 7 days the forecast is very general and not very accurate.

The model is run in two parts: the first part has a higher resolution and goes out to 180 hours (7 days) in the future, the second part runs from 180 to 384 hours (16 days) at a lower resolution. The resolution of the model varies in each part of the model: horizontally, it divides the surface of the earth into 35 or 70 kilometre grid squares; vertically, it divides the atmosphere into 64 layers and temporally, it produces a forecast for every 3rd hour for the first 180 hours, after that they are produced for every 12th hour.
NWP:
Numerical weather prediction uses current weather conditions as input into mathematical models of the atmosphere to predict the weather. Although the first efforts to accomplish this were done in the 1920s, it wasn't until the advent of the computer and computer simulation that it was feasible to do in real-time. Manipulating the huge datasets and performing the complex calculations necessary to do this on a resolution fine enough to make the results useful requires the use of some of the most powerful supercomputers in the world. A number of forecast models, both global and regional in scale, are run to help create forecasts for nations worldwide. Use of model ensemble forecasts helps to define the forecast uncertainty and extend weather forecasting farther into the future than would otherwise be possible.

Wikipedia, Numerical weather prediction, http://en.wikipedia.org/wiki/Numerical_weather_prediction(as of Feb. 9, 2010, 20:50 UTC).