Model:

FMI (Hirlam Model from finnish meteorological institute)

Updated:
4 times per day, from 08:00, 14:00, 20:00, and 00:00 UTC
Greenwich Mean Time:
12:00 UTC = 13:00 CET
Resolution:
0.068025° x 0.068025°
Parameter:
Geopotential in 850 hPa (solid, black lines) and Vorticity advection in 105/(s*6h) (colored lines)
Description:
The two types of vorticity advection are positive (PVA) and negative vorticity advection (NVA). The closed circles in the figure show the 850 hPa absolute vorticity lines, the others the 850 hPa height lines. When an air parcel is moving from an area higher vorticity to an area lower vorticity this is called: PVA (red color). The other way around is called: NVA (blue color). PVA is associated with upper-air divergence, i.e. upward vertical motion. NVA is associated with down ward vertical motion. Therefore, PVA  at 500 hPa is strongest above a surface low, while NVA at 500 hPa is strongest above a surface high.
In operational meteorology Vorticity advection maps are used to identify areas with vertical air motion to see where clouds, precipitation or clear conditions are likely to occur. Keep in mind, however, that PVA is not the same as upward vertical motion. Here temperature advection is important too.
FMI:
FMI
At the Finnish Meteorological Institute, results from several numerical weather prediction models are utilized. Most of all, these include products from the European Centre of Medium Range Forecasts (ECMWF), located in Reading in the United Kingdom. For shorter range forecasts, more detailed forecasts are produced in-house using a limited area models (LAMs) called HIRLAM and HARMONIE, which are being developed by FMI as an international co-operation programme with a number of European countries.
NWP:
Numerical weather prediction uses current weather conditions as input into mathematical models of the atmosphere to predict the weather. Although the first efforts to accomplish this were done in the 1920s, it wasn't until the advent of the computer and computer simulation that it was feasible to do in real-time. Manipulating the huge datasets and performing the complex calculations necessary to do this on a resolution fine enough to make the results useful requires the use of some of the most powerful supercomputers in the world. A number of forecast models, both global and regional in scale, are run to help create forecasts for nations worldwide. Use of model ensemble forecasts helps to define the forecast uncertainty and extend weather forecasting farther into the future than would otherwise be possible.

Wikipedia, Numerical weather prediction, http://en.wikipedia.org/wiki/Numerical_weather_prediction(as of Feb. 9, 2010, 20:50 UTC).