模式:
COSMO (Consortium for Small-scale Modeling)
更新:
27 times per day, from 00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, 21:00 UTC
格林尼治平时:
12:00 UTC = 20:00 北京时间
Resolution:
0.0625° x 0.0625°
描述:
850百帕位势高度(位势什米,实线)。
850百帕温度(°C,彩色虚线)。
这幅图帮您识别用于确定锋面的等温线密集区。 此外,您还能根据
模式计算出的850百帕温度粗略地估计地面以上2米的最高温度。
不过,当出现(冬季)逆温时,这种方法不适用。
Spaghetti plots:
are a method of viewing data from an ensemble forecast.
A meteorological variable e.g. pressure, temperature is drawn on a chart for a number of slightly different model runs from an ensemble. The model can then be stepped forward in time and the results compared and be used to gauge the amount of uncertainty in the forecast.
If there is good agreement and the contours follow a recognisable pattern through the sequence then the confidence in the forecast can be high, conversely if the pattern is chaotic i.e resembling a plate of spaghetti then confidence will be low. Ensemble members will generally diverge over time and spaghetti plots are quick way to see when this happens.
Spaghetti plot. (2009, July 7). In Wikipedia, The Free Encyclopedia. Retrieved 20:22, February 9, 2010, from
http://en.wikipedia.org/w/index.php?title=Spaghetti_plot&oldid=300824682
COSMO-DE:
COSMO
The COSMO-Model is a nonhydrostatic limited-area atmospheric prediction model. It has been designed for both operational numerical weather prediction (NWP) and various scientific applications on the meso-β and meso-γ scale. The COSMO-Model is based on the primitive thermo-hydrodynamical equations describing compressible flow in a moist atmosphere. The model equations are formulated in rotated geographical coordinates and a generalized terrain following height coordinate. A variety of physical processes are taken into account by parameterization schemes.
The basic version of the COSMO-Model (formerly known as Lokal Modell (LM)) has been developed at the Deutscher Wetterdienst (DWD). The COSMO-Model and the triangular mesh global gridpoint model GME form – together with the corresponding data assimilation schemes – the NWP-system at DWD, which is run operationally since end of 1999. The subsequent developments related to the model have been organized within COSMO, the Consortium for Small-Scale Modelling. COSMO aims at the improvement, maintenance and operational application of the non-hydrostatic limited-area modelling system, which is now consequently called the COSMO-Model.
NWP:
Numerical weather prediction uses current weather conditions as input into mathematical models of the atmosphere to predict the weather. Although the first efforts to accomplish this were done in the 1920s, it wasn't until the advent of the computer and computer simulation that it was feasible to do in real-time. Manipulating the huge datasets and performing the complex calculations necessary to do this on a resolution fine enough to make the results useful requires the use of some of the most powerful supercomputers in the world. A number of forecast models, both global and regional in scale, are run to help create forecasts for nations worldwide. Use of model ensemble forecasts helps to define the forecast uncertainty and extend weather forecasting farther into the future than would otherwise be possible.
Wikipedia, Numerical weather prediction,
http://zh.wikipedia.org/wiki/數值天氣預報(as of Feb. 9, 2010, 20:50 UTC).
模式:
COSMO (Consortium for Small-scale Modeling)
更新:
27 times per day, from 00:00, 03:00, 06:00, 09:00, 12:00, 15:00, 18:00, 21:00 UTC
格林尼治平时:
12:00 UTC = 20:00 北京时间
Resolution:
0.0625° x 0.0625°
参量:
Geopotential height (tens of m) at 925 hPa (solid line) and Temperature (°C) at 925 hPa (coloured, dashed line)
描述:
This chart helps to identify areas of densely packed isotherms (lines of equal temperature)
indicating a front. Aside from this you can use the modeled temperature in 925 hPa (2000 ft a.s.l.)
to make a rough estimate on the expected maximum temperature in 2m above the ground.
However, this method does not apply to (winter) inversions.
Spaghetti plots:
are a method of viewing data from an ensemble forecast.
A meteorological variable e.g. pressure, temperature is drawn on a chart for a number of slightly different model runs from an ensemble. The model can then be stepped forward in time and the results compared and be used to gauge the amount of uncertainty in the forecast.
If there is good agreement and the contours follow a recognisable pattern through the sequence then the confidence in the forecast can be high, conversely if the pattern is chaotic i.e resembling a plate of spaghetti then confidence will be low. Ensemble members will generally diverge over time and spaghetti plots are quick way to see when this happens.
Spaghetti plot. (2009, July 7). In Wikipedia, The Free Encyclopedia. Retrieved 20:22, February 9, 2010, from
http://en.wikipedia.org/w/index.php?title=Spaghetti_plot&oldid=300824682
COSMO-DE:
COSMO
The COSMO-Model is a nonhydrostatic limited-area atmospheric prediction model. It has been designed for both operational numerical weather prediction (NWP) and various scientific applications on the meso-β and meso-γ scale. The COSMO-Model is based on the primitive thermo-hydrodynamical equations describing compressible flow in a moist atmosphere. The model equations are formulated in rotated geographical coordinates and a generalized terrain following height coordinate. A variety of physical processes are taken into account by parameterization schemes.
The basic version of the COSMO-Model (formerly known as Lokal Modell (LM)) has been developed at the Deutscher Wetterdienst (DWD). The COSMO-Model and the triangular mesh global gridpoint model GME form – together with the corresponding data assimilation schemes – the NWP-system at DWD, which is run operationally since end of 1999. The subsequent developments related to the model have been organized within COSMO, the Consortium for Small-Scale Modelling. COSMO aims at the improvement, maintenance and operational application of the non-hydrostatic limited-area modelling system, which is now consequently called the COSMO-Model.
NWP:
Numerical weather prediction uses current weather conditions as input into mathematical models of the atmosphere to predict the weather. Although the first efforts to accomplish this were done in the 1920s, it wasn't until the advent of the computer and computer simulation that it was feasible to do in real-time. Manipulating the huge datasets and performing the complex calculations necessary to do this on a resolution fine enough to make the results useful requires the use of some of the most powerful supercomputers in the world. A number of forecast models, both global and regional in scale, are run to help create forecasts for nations worldwide. Use of model ensemble forecasts helps to define the forecast uncertainty and extend weather forecasting farther into the future than would otherwise be possible.
Wikipedia, Numerical weather prediction,
http://zh.wikipedia.org/wiki/數值天氣預報(as of Feb. 9, 2010, 20:50 UTC).