Model: | AEMET: Hirlam Aemet "Agencia Estatal de Meteorología (AEMET)" |
|||||||||||||||||
Updated: | 4 times per day, from 0:00, 06:00, 12:00 and 18:00 GMT | |||||||||||||||||
Greenwich Mean Time: | 12:00 GMT = 07:00 EST | |||||||||||||||||
Resolution: | 0.05° x 0.05° | |||||||||||||||||
Parameter: | Soaring Index | |||||||||||||||||
Description: |
The Soaring Index map - updated every 6 hours - shows the modelled lift rate by thermals (convective clouds).
The index is based on weather information between 5 000 feet (1 524 metres) and 20 000 feet (6 096 metres)
and is expressed in Kelvin.
Table 1: Characteristic values for Soaring Index for soaring
Table 2: Critical values for the Soaring Index
|
|||||||||||||||||
NWP | Numerical weather prediction uses current weather conditions as input into mathematical models of the atmosphere to predict the weather. Although the first efforts to accomplish this were done in the 1920s, it wasn't until the advent of the computer and computer simulation that it was feasible to do in real-time. Manipulating the huge datasets and performing the complex calculations necessary to do this on a resolution fine enough to make the results useful requires the use of some of the most powerful supercomputers in the world. A number of forecast models, both global and regional in scale, are run to help create forecasts for nations worldwide. Use of model ensemble forecasts helps to define the forecast uncertainty and extend weather forecasting farther into the future than would otherwise be possible. Wikipedia, Numerical weather prediction, http://en.wikipedia.org/wiki/Numerical_weather_prediction(as of Feb. 9, 2010, 20:50 GMT). |